
Abstract. Symmetry-adapted perturbation theory is ex-
tended to the (quasi) degenerate, open-shell case. The
new formalism is tested in calculations of the interaction
energies for a helium atom in the ground state interact-
ing with an excited hydrogen atom. It is shown that the
method gives satisfactory results if the coupling with
higher Rydberg states of the dimer is small, as is the case
for the A2R�;B2P;E2P; 32P, and 12D states of HeH.
For the C2R� state convergence of the method is very
slow, but it can be improved by including the n � 3
states in the model space.
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1 Introduction

Intermolecular interactions involving closed- and open-
shell monomers are nowadays a subject of growing
interest (see, for instance, Refs. [1, 2] for a review of
experimental activity in this area). Potential energy
surfaces for weakly bound open-shell complexes can be
computed using the supermolecular method [3]. How-
ever, straightforward applications of this conceptually
simple approach are far from trivial. Size-consistent
methods, such as conventional single-reference many-
body perturbation theory [4] or the coupled-cluster
method [5, 6], can only be applied when the unrestricted
Hartree-Fock determinant is used as the reference state.
Consequently, the correlated wave functions for dimers
are not pure spin functions, and it is di�cult to estimate
a priori how spin contamination a�ects computed
interaction energies [7]. On the other hand, multirefer-
ence coupled-cluster methods that are size-consistent
and do not break the spin symmetry are not su�ciently

developed [6] to be routinely applied in studies of weak
intermolecular complexes.

Direct, intermolecular perturbation theory studies of
interaction energies in open-shell complexes are scarce
[8]. The pioneering work in this ®eld was performed by
Chalasinski and Szalewicz [9] who generalized the per-
turbation theories developed earlier by Hirschfelder [10],
van der Avoird [11], Murrell and Shaw [12] and, Musher
and Amos [13] to degenerate systems. Representing the
interaction energy as a power series in the formal
strength parameter k Chalasinski and Szalewicz found
that for the H� � �H� test system the perturbation ex-
pansions studied by them were divergent for k � 1, i.e.,
for the physical value of the parameter k. The divergence
also persisted at large internuclear distances, R, although
the low-order results were remarkably accurate at the
van der Waals minimum region. One can expect that the
techniques of model spaces and wave operators [14],
characteristic of recent developments in degenerate and
quasidegenerate perturbation theory, may lead to better
convergence than the straightforward power series ex-
pansion considered by Chalasinski and Szalewicz.

The most di�cult problem in the perturbation theory
of intermolecular interactions is the necessity to account
for the exchange energy, i.e., for that part of the inter-
action energy which arises from the resonance tunneling
of electrons between the interacting monomers. In the
conventional Rayleigh-SchroÈ dinger perturbation ap-
proach to intermolecular interactions, usually referred to
as the polarization approximation [8], one starts from
the zeroth-order wave function which is not antisym-
metric with respect to permutations of electrons between
monomers. Various methods, referred to collectively as
symmetry-adapted perturbation theory (SAPT), were
proposed to correct this de®ciency and to force the
proper symmetry on the perturbed wave function [15].
For an insightful presentation of the mathematical
foundations of SAPT, including a discussion of still
unresolved problems, we refer the reader to the series of
papers published recently by Adams [16±19]. Fortu-
nately, the simplest approach, referred to as symmetri-Correspondence to: B. Jeziorski
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zed Rayleigh-SchroÈ dinger perturbation theory (SRS)
[20, 21], appears to be su�ciently accurate to predict the
interaction energies with an error of a few percent [22±
24]. At present, interactions between closed-shell systems
can routinely be studied by the many-body version of
SAPT which is applicable to many-electron, polyatomic
dimers (see Ref. [8] for a review). The potential energy
surfaces obtained by SAPT were successfully applied to
explain the experimental infrared spectra [25], scattering
processes [26], and bulk properties [27] of numerous van
der Waals dimers (see Refs. [28, 29] for recent reviews).
Recently, the SAPT approach has been generalized to
nonadditive interactions in trimers [30] and to collision-
induced properties [31].

Since the SAPT approach has been successfully
applied to describe intermolecular interactions and
properties of closed-shell systems, it is interesting to in-
vestigate if a similar approach can work for complexes
involving open-sell monomers. In this work we present a
generalization of the SAPT approach to degenerate and
quasidegerate situations. Our approach is based on
general localization ideas introduced earlier by Adams
[32], Chipman [33], and Klein [34]. The applicability of
this new method is tested on the simple example of a
ground-state helium atom interacting with an excited
hydrogen atom, i.e., on the Rydberg states of the HeH
molecule. For this system full con®guration interaction
(FCI) calculations with reasonably large basis sets can
be performed, so comparison of the ®nite-order pertur-
bation theory results with the exact in®nite-order limits
is possible. The excited states of HeH are of considerable
current experimental and theoretical interest. Since the
development of new experimental techniques for the
detection of the excimer states [35] a large number of
theoretical and experimental works considering various
aspects of the Rydberg states of the HeH system
appeared in the literature [35±38].

2 Theory

To simplify the notation we shall consider the particular
case of a two-electron system A in a nondegenerate state
interacting with a one-electron system B in an excited,
degenerate state. In actual applications A will be a
helium atom in the ground state and B an excited
hydrogen atom. The general idea of our method is,
however, applicable to larger systems, although the
details concerning the permutational symmetry of the
many-electron wave function will di�er and will lead to
more complicated system-speci®c equations.

We use the usual partitioning of the total Born-
Oppenheimer Hamiltonian H into an unperturbed part
being the sum of monomer Hamiltonians, H0 �
HA � HB, and a perturbation operator V � H ÿ H0. The
eigenfunctions of the unperturbed operator H0 are given
by

/�0�0k � U�r1; r2�vk�r3� ; �1�
where U�r1; r2� is the spatial part of the ground-state
wave function of the helium atom and vk�r3� is a

hydrogen orbital with an index k collecting all three
quantum numbers n; l; and m. The orbitals vk�r3� used
in the construction of the zeroth-order approximation
to the wave functions form the so-called active set.
The functions /�0�0k correspond to the eigenvalue
E�0�k � EHe;0 � EH;k.

For the excited �n � 2� hydrogen atom the simplest
active set consists of four orbitals: 2s; 2pz; 2px; and 2py .
The formalism presented below is valid for a general,
quasidegenerate case, so we do not have to assume that
all /�0�0;k functions correspond to the same eigenvalue of
H0. Therefore, higher excited vk orbitals can be added to
the active set, if necessary. The number of elements of
this set will be denoted by D. It should be noted that for
low-lying excited states of HeH we do not have to con-
sider excited states of the He atom, since the excitation
energy of the latter (�0:75 hartree) is larger than the ®rst
ionization energy of the hydrogen atom (0.5 hartree).
However, if we take an argon atom instead of helium,
some excited states of argon should also be taken into
account [39].

The symmetry operations of the total Hamiltonian H
form the group S3 � C1v, i.e., the product of the sym-
metric group S3 and the axial symmetry group C1v. The
linear space spanned by the zeroth-order approxima-
tions to the exact wave functions (the so-called model
space) should be invariant under this group. Obviously,
the space spanned by /�0�0k ; k � 1; . . . ;D, does not meet
this requirement, since the functions /�0�0k transform ac-
cording to the �2� � �1� irrep of S2 � S1 and do not carry
a representation of the permutation group S3. To assure
proper symmetry properties of the model space under S3

permutations, all functions of the type p/�0�0k ; p 2 S3,
should be included. Since

P12/
�0�
0k � /�0�0k ; �2�

it is su�cient to include the functions /�0�0k , /
�0�
1k , and /�0�2k ,

where

/�0�1k �def P13/
�0�
0k ; �3�

/�0�2k �def P23/
�0�
0k : �4�

The linearly independent functions /�0�ak , a � 0; 1; 2,
correspond to the three possible localizations of elec-
trons 1, 2, and 3 on A and B. The model space invariant
under S3, spanned by M � 3D functions /�0�ak ,
a � 0; 1; 2; k � 1; . . . ;D, will be denoted by M0. The
projection operator onM0 will be denoted by P , whereas
Pa shall denote the operator projecting on the subspace
with speci®c localization of electrons on A and B,

Pa �
X

k

j/�0�ak ih/�0�ak j : �5�

The summation in Eq. (5) runs over all orbitals from the
active set. Note that the operators Pa project on
subspaces which are not mutually orthogonal so P is
not equal to the sum of the Pa s. The wave functions /�0�1k
and /�0�2k are eigenfunctions of the unperturbed Hamil-
tonians with appropriately permuted electronic coordi-

nates H1 �def P13H0P13 and H2 �def P23H0P23, respectively,
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Ha/
�0�
ak � E�0�k /�0�ak : �6�

For each Ha, a perturbation operator Va is de®ned as the
di�erence Va � H ÿ Ha.

The target space M, associated with the model space
M0, consists of all (physical and nonphysical) eigen-
functions of the total Hamiltonian H which correspond
± in the asymptotic limit of large interatomic distance R
± to the energy E�0�k (or a given range of unperturbed
energies). Any set of M functions /ak spanning the target
space M satis®es the system of equations

�H ÿ E�0�k �/ak �
X

b

X
l

Qbl
ak/bl : �7�

Once the coe�cients Qbl
ak are known, the target space

eigenvalues of the Hamiltonian can be obtained by
diagonalization of the matrix ~Q de®ned by

~Qbl
ak � Qbl

ak � E�0�k dkldab : �8�
~Qbl

ak is the matrix representation of H in the invariant
subspace spanned by the non-orthogonal basis /ak. The
eigenvectors di

~Qdi � Eidi �9�
de®ne the target space eigenfunctions wi of H in terms
of the basis functions /ak,

wi �
X

a

X
k

dak
i /ak : �10�

If all unperturbed wave functions correspond to the
same energy, the diagonalization of Q gives the required
interaction energies directly. Thus, the matrix Q plays a
similar role to that of the e�ective interaction matrix in
conventional degenerate perturbation theory [14].

The functions /ak satisfying Eq. (7) will be referred to
generally as the primitive [40] or localized [32, 41] wave
functions (note that the exact eigenfunctions of H also
belong to the class of primitive functions). They trans-
form according to the induced representation
��2� � �1�� " S3 � �3� � �2; 1� of the group S3. The exact,
``delocalized'' eigenfunctions wi are of de®nite permu-
tational symmetry and transform according to the [3] or
[2, 1] irreps of S3. The functions belonging to the two-
dimensional irrep [2, 1] appear in degenerate pairs and,
after multiplication by appropriate spin functions, can
be used to construct a fully antisymmetric spin-depen-
dent wave function. The functions belonging to the [3]
irrep cannot be used to build an antisymmetric wave
function and are discarded.

Obviously, the functions /ak, and hence also the co-
e�cients Qbl

ak, are not uniquely de®ned by Eq. (7). To
specify them uniquely one has to impose some additional
constraints referred to as localization conditions. These
localization conditions should to be chosen in such a
way that /ak is as similar as possible to /�0�ak ; in partic-
ular, these two wave functions must correspond to the
same localization of electrons at interacting monomers.
One can expect that /ak can then be obtained by means
of perturbation theory or an iterative procedure utilizing
/�0�ak as the zeroth-order approximation. To de®ne spe-

ci®c localization conditions it is convenient to introduce
the wave operator U (de®ne on M0) that transforms the
unperturbed wave function /�0�ak into the exact primitive
function /ak:

U/�0�ak � /ak : �11�
In the present study we shall consider three localization
conditions, referred to for historical reasons [42] as the
Bloch [34, 43], Hirschfelder-Silbey (HS) [44], and Kato
[33, 45] localizations.

2.1 Bloch localization condition

The wave operator corresponding to Bloch localization
[34] is de®ned by the equations

PaUPb � PaPb; for a; b � 0; 1; 2 : �12�
When a � b � 0, the above equations reduce to the
condition used by Bloch [43] to de®ne the wave operator
of his degenerate perturbation theory. Using Eqs. (5)
and (11) one can easily show that the conditions of
Eq. (12) can be rewritten as

h/�0�ak j/bli � h/�0�ak j/�0�bl i forall a; k; b; l : �13�
The function /ak de®ned by Eq. (12) or (13) has the
property that the functional J �~s� � h~sÿ /akj~sÿ /aki,
~s 2M0, reaches its minimum when ~s � /�0�ak [34, 42].
Projecting Eq. (7) by /�0�cm , using the localization
conditions of Eq. (13), and the partitioning of the
Hamiltonian H � Hc � Vc, we get a set of linear
equations that can be used to express the coe�cients

Qbl
ak in terms of the primitive functions /ak

h/�0�cm jVc/aki � �E�0�m ÿ E�0�k �h/�0�cm j/�0�ak i
�
X

b

X
l

Qbl
akh/�0�cm j/�0�bl i : �14�

2.2 HS localization condition

HS localization is determined by the equation

Pa�Hb;U �Pb � 0; for a 6� b; a; b � 0; 1; 2 ; �15�
and by the intermediate normalization condition

PaUPa � Pa; for a � 0; 1; 2 : �16�
Note that the intermediate normalization of the Bloch
wave operator is implied by Eq. (12). The conditions
represented by Eqs. (15) and (16) are equivalent to the
following set of equations [46]

h/�0�am jHb ÿ E�0�l j/bli � 0 for all k; l; and a 6� b �17�
and

h/�0�ak j/ali � dkl for all a : �18�
Equations (17) and (18) were applied for the ®rst time
by Hirschfelder and Silbey [44] in the special case when
the Q matrix can be diagonalized by symmetry. From
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Eqs. (7), (17), and (18) we get the following set of linear
equations for Qbl

ak,

h/�0�cm jVa/aki �
X

b

X
l

Qbl
akh/�0�cm j/bli : �19�

HS localization does not seem to be related to any
variational principle. It is very convenient in practice
since it is preserved by the iteration process used to solve
Eq. (7), see Appendix.

2.3 Kato localization condition

The most natural way to de®ne the primitive wave
function /ak is to require that it is closer to /�0�ak than any
other element of the target spaceM. This means that /ak
is a projection of /�0�ak on the target space. This condition
was used by Kato [45] in his formulation of degenerate
perturbation theory. Since in developing perturbation
equations the intermediate normalization, Eq. (18), is
particularly convenient, we shall minimize the distance
in the Hilbert space between /ak and /�0�ak under the
constraint that /ak satis®es the intermediate normaliza-
tion exactly. This can be done by minimizing the func-
tional

Gakb~sc � h~sÿ /�0�ak j~sÿ /�0�ak i
ÿ
X

l

Lak;l�h~sj/�0�al i ÿ dkl� ; �20�

where ~s 2M is a trial function and Lak;l are Lagrange
multipliers. After some simple algebra we get the
following set of necessary conditions for the primitive
wave function /ak;

hdsj/ak ÿ
X

l

el
akhdsj/�0�al i � 0 ; �21�

where ds is an arbitrary function (variation) from the
space M, and the coe�cients el

ak � dkl � Lak;l=2 can be
expressed in terms of the functions /ak

el
ak � h/alj/aki : �22�
By substituting Eq. (22) into Eq. (21) and replacing ds by
/bl we get the generalized Kato localization conditions

h/blj/aki ÿ
X

m

h/amj/akih/blj/�0�ami � 0 : �23�

A similar expression for the nondegenerate case has been
derived in Ref. [42]. The corresponding Qbl

ak coe�cients
are solutions of the following system of linear equations

h/�0�cm jVc/aki � �E�0�m ÿ E�0�k �h/�0�cm j/aki
�
X

b

X
l

Qbl
akh/�0�cm j/bli : �24�

2.4 Outline of the iterative procedure

Equation (7) can be solved iteratively using /�0�ak to start
up the iterations. Consecutive approximations to the
primitive wave functions are obtained from the equation

/ak � /�0�ak � R̂ak�ÿVa/ak �
X

b

X
l

Qbl
ak/bl� ; �25�

assuming that the matrix Qbl
ak and all the primitive

functions /ak on the right-hand side of Eq. (25) are
known from the previous iteration. The symbol R̂ak
stands for the reduced resolvent R̂ak � �1ÿ Pa�
�Ha ÿ E�0�k � iPa�ÿ1. Equation (25) can be easily derived
from Eq. (7) by partitioning the Hamiltonian H as
Ha � Va, moving Va to the right-hand side, acting on both
sides of the resulting equation with R̂ak, and employing
the identity R̂ak�Ha ÿ E�0�k � � 1ÿ Pa together with the
intermediate normalization of /ak; Pa/ak � /�0�ak .

Equation (25) can also be solved using an order-
by-order perturbation expansion. Such an expansion is
obtained when all Va operators are multiplied by the
same formal expansion parameter k and the primitive
functions are expanded in powers of this parameter. The
iterative process of solving Eq. (25) is simpler compu-
tationally and is expected to show the same convergence
pattern as the corresponding perturbation expansion, in
the sense that the energy of the nth iteration and the sum
of the perturbation corrections through the nth order
will di�er by terms of the order higher than n [15].
The functions /ak for various a di�er only by the
permutation of the electronic coordinates, /1k � P13/0k,
/2k � P23/0k, so it is su�cient to solve Eq. (25) for a � 0.
The coe�cients Qbl

ak can be obtained by solving the sys-
tem of linear equations, characteristic to the applied
localization scheme, i.e., Eqs. (14), (19), and (24).

We can now de®ne the iterative processes corre-
sponding to the three localization schemes introduced in
Sects. 2.1±2.3. In the nth iteration we perform the
following operations:

1. Assuming that the functions /�nÿ1�ak from the
�nÿ 1�th iteration are known, the matrix Qbl

ak�n� is cal-
culated from the M independent sets of M linear equa-
tions in M unknowns

h/�0�cm jVc/
�nÿ1�
ak i � �E�0�m ÿ E�0�k �h/�0�cm j/�nÿ1�ak i

�
X

b

X
l

Qbl
ak�n�h/�0�cm j/�nÿ1�bl i : �26�

Equation (26) corresponds to the Kato localization, but
similar equations for the Bloch and HS localizations can
be easily derived from Eqs. (14) and (19), respectively.

2. The interaction energies of the nth iteration are
obtained by diagonalizing the Qbl

ak�n� matrix. If the zer-
oth-order functions are not completely degenerate, the
matrix ~Qbl

ak of Eq. (8) is diagonalized and the zeroth-
order energies E�0�k are subtracted from appropriate
eigenvalues.

3. The wave functions /�nÿ1�ak and the matrix Qbl
ak�n�

are used to determine new approximation �/�n�ak to the
wave functions /ak:

�/�n�0k �/�0�0k � R̂0k

�
ÿ V0/

�nÿ1�
0k �

X
b

X
l

Qbl
0k�n�/�nÿ1�bl

�
;

�27�
�/�n�lk � P13

�/�n�0k ; and
�/�n�2k � P23/

�n�
0k :
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4. In general, the iterative procedure, Eqs. (26) and
(27), does not automatically preserve the localization of
the wave function, i.e., the functions �/�n�ak do not ful®ll
the localization conditions. Therefore, a linear trans-
formation (the so-called relocalization)

/�n�ak �
X

b

X
l

cbl
ak�n� �/�n�bl ; �28�

is necessary to assure a proper localization of the wave
function in each iteration. The relocalization coe�cients
cbl
ak�n� are obtained by imposing the localization condi-
tions on the wave function /�n�ak . For the Bloch scheme
this is done by solving the set of linear equations
resulting from Eq. (13),X

c

X
m

ccm
bl �n�h/�0�ak j �/�n�cm i � h/�0�ak j/�0�bl i ; �29�

for a; b � 0; 1; 2 and k; l � 1; . . . ;D. In HS theory the
functions �/�n�ak automatically ful®l the localization con-
ditions, Eqs. (17) and (18), so there is no need for the
relocalization (see Appendix). The Kato localization of
the wave function is not preserved during the iterative
process, Eq. (27), and relocalization is necessary.
Substituting Eq. (28) into Eq. (23) gives a system of
cubic equations for the relocalization coe�cients cbl

ak�n�.
These equations can be rigorously linearized by noting
that in the nth iteration the projection against /bl in
Eq. (23) can be replaced by projection against �/�n�bl .
The resulting system of linear equationsX

c

X
m

ccm
ak �n�h �/�n�bl j �/�n�cm i ÿ

X
m

�em
ak�n�h �/�n�bl j/�0�ami � 0 �30�

is su�cient to determine the coe�cients ccm
ak �n� and the

parameters �em
ak�n� � h �/�n�am j �/�n�ak i if it is supplemented by

the equationX
c

X
m

ccm
ak �n�h �/�n�cm j/�0�al i � dkl �31�

resulting from the intermediate normalization condition,
Eq. (18).

In comparison to the order-by-order perturbation
expansion of the e�ective interaction matrix the iterative
process described above has the advantage that only the
results of the last iteration need to be stored.

3 Application to Rydberg states of helium hydride

3.1 Computational details

For the helium atom we used a �5s3pld� basis set. The
isotropic part of this basis was represented by the
(61111) contraction of the 10s set of van Duijneveldt
[47]. The polarization part was taken from the basis of
Gutowski et al. [48] optimized for the dispersion energy
of He2 (the exponents of the 3p set were rounded to four
digits).

The hydrogenic orbitals with n � 3 were represented
by large contracts of even-tempered Gaussian functions.
The a and b parameters of these functions (the kth ex-

ponent is equal to abkÿ1) were optimized for the energy
of the nth state of the hydrogen atom �n � 3�. In the
resulting �9s3p1d� basis set (see Table 1 for a more
detailed speci®cation) the energies of the 1s, 2s, and 2p
states were reproduced with errors smaller than 10ÿ12
hartree. The errors in the energies of the n � 3 states
were smaller than 10ÿ10 hartree. This basis was extended
to the �10s4p2d� set by adding di�use functions with
exponents 0.04282 (s function), 0.0179 (p function), and
0.0362 (d function) optimized for the static dipole
polarizabilities of the 2s and 2p states of the hydrogen
atom. The energy of the helium atom in the dimer basis
set obtained is equal to ÿ2:898861188 a.u. for R � 3
bohr and ÿ2:898852105 a.u. for R � 7 bohr.

The three-electron con®guration space used in FCI
and perturbation theory calculations is spanned by the
basis

Wjkl�r1; r2; r3�
� 1���������������������

2�1� djk�
p �j�r1�k�r2� � j�r2�k�r1��l�r3� ; �32�

where j; k denote the self-consistent ®eld (SCF) orbitals
of the helium atom, and l is an orbital of the hydrogen
atom. We can work with the space of functions which
are symmetric in r1 and r2 since we compute only
the function /0k and the symmetric component of
the doublet transforming according to [2, 1] irrep.
The orbitals j; k, and l were computed in the full basis
of the dimer. Since C1v is a symmetry group of both H
and H0, we could consider the states of HeH that belong
to di�erent representations of C1v separately. This
means that Eqs. (9) and (25) were solved separately for
the model spaces transforming according to R;P and D
representations of C1v. The plots of the potential energy
curves for the states considered by us are given, for
example, in Ref. [37].

The ATMOL [49] suite of codes was used to compute
the atomic integrals and the SCF vectors of the He atom.
The four-index transformation to the molecular basis
was taken from the SAPT suite of codes [50]. The FCI
energies were computed with the use of the code of Duch
[51] based on the Davidson algorithm [52]. The inter-
action energies computed from the FCI energies using
the supermolecular approach and corrected for basis set
superposition error (BSSE) using the conventional
counterpoise correction [53] will be referred as the FCI
interaction energies.

As discussed in the Introduction the excited states of
HeH are of considerable theoretical interest [37, 38].
However, in most papers [38] only the total energies of

Table 1. Parameters of the contracted part of the basis set for the
hydrogen atom

Orbital a b kmax Contraction

1s 0.025 1.67 40 (10,10,10,10)
2s 0.00072 1.36 40 (10,10,10,10)
3s 0.00215 1.55 10 (10)
2p 0.005 1.57 30 (15,15)
3p 0.00216 1.55 15 (15)
3d 0.00285 1.69 15 (15)
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various states of the HeH molecule were reported, so it
is di�cult to estimate the accuracy of the FCI inter-
action energies computed in the present paper. To our
knowledge, only van Hemert and Peyerimho� [37] have
reported the interaction energies for the lowest ten
states of HeH. Unfortunately, the results presented in
Ref. [37] were not corrected for BSSE. For the smaller
interatomic distance considered by us (R � 3 bohr)
BSSE represents a small fraction of the interaction
energy, so a comparison of our FCI results with the
results of Ref. [37] is possible. It turns out that for all
states considered in the present paper the results of Ref.
[37] agree with our values to within a few percent. To
compare the results at R � 7 bohr one should estimate
the BSSE. One can notice that the interaction energies
for R � 20 bohr reported in Ref. [37] are very large,
while they should be close to zero (with an accuracy of
a few micro hartree). Assuming that the results at
R � 20 represent pure BSSE or size-consistency error,
and that these errors show a weak dependence on R,
one can approximately correct the results of Ref. [37] at
R � 7 bohr by subtracting from their interaction ener-

gies at R � 7 bohr the values for R � 20 bohr. The
results of Ref. [37] corrected in this way agree with our
results to within a few percent for the A2R�;C2R�, and
B2P states.

3.2 Numerical results and discussion

The convergence of the iterative procedure described in
Sect. 2.4 for the three localization schemes introduced in
Sects. 2.1±2.3 has been tested by performing numerical
calculations for the lowest excited states of the He � � �H
system. We present the results for two interatomic
separations, R � 3 and R � 7 bohr. The smaller distance
corresponds to the repulsive region of the X2R� and
C2R� states and to the region of the chemical minimum
for the A2R� and B2P states. The larger distance
corresponds approximately to the van der Waals min-
imum of the ground state.

We ®rst consider the active sets consisting of the 2s
and 2pz orbitals for the R symmetry, and of the 2px or-
bital for the P symmetry. In Tables 2 and 3 we present

Table 2. Convergence of interaction energies for the A2S+, C2S+,
and B2Õ states of HeH at R = 3 bohr in terms of the percentage
errors relative to the FCI interaction energy. The active set consists
of the 2s and 2pz orbitals for the S states and of the 2px orbital for

the Õ state. The FCI interaction energies for the A2S+, C2S+, and
B2Õ states are )13.689, 16.398, and )15.652 millihartree,
respectively

n A2S+ C2S+ B2Õ

Bloch HS Kato Bloch HS Kato Bloch HS Kato

1 )94.599 )94.599 )94.599 271.186 271.186 271.186 )88.073 )88.073 )88.073
2 )34.399 )34.399 )34.399 172.841 172.841 172.841 )32.150 )32.150 )32.150
3 )21.942 )21.935 )21.939 156.279 155.910 153.019 )20.944 )20.927 )20.948
4 )13.303 )13.312 )13.327 103.412 106.233 99.667 )13.490 )13.485 )13.494
5 )8.159 )8.102 )8.241 90.181 88.278 86.969 )9.245 )9.245 )9.247
6 )3.814 )3.771 )4.107 42.559 44.374 44.060 )6.362 )6.367 )6.362
7 )1.345 )1.039 1.890 44.807 36.702 50.898 )4.482 )4.489 )4.481
8 2.307 2.566 0.831 )11.370 )11.601 7.034 )3.199 )3.207 )3.197
9 2.333 3.346 0.934 30.509 8.250 49.992 )2.330 )2.339 )2.328
10 9.600 10.216 3.888 )71.678 )70.784 )23.245 )1.731 )1.740 )1.728
20 2810.694 2455.767 17.777 )189.955 )193.408 )92.865 )0.311 )0.315 )0.309

Table 3. Convergence of the interaction energies for the A2S+,
C2S+, and B2Õ states of HeH at R = 7 bohr in terms of the
percentage errors relative to the FCI interaction energy. The active
set consists of the 2s and 2pz orbitals for the S states and of the 2px

orbital for the Õ state. The FCI interaction energies for the A2S+,
C2S+, and B2Õ states are )0.13885, 6.8185, and )0.25558
millihartree, respectively

n A2S+ C2S+ B2Õ

Bloch HS Kato Bloch HS Kato Bloch HS Kato

1 )96.427 )96.427 )96.427 83.183 83.183 83.183 )73.775 )73.775 )73.775
2 )2.099 )2.099 )2.099 77.082 77.082 77.082 )4.501 )4.501 )4.501
3 )0.596 )0.596 )0.596 95.866 97.279 94.636 )2.404 )2.404 )2.404
4 )0.292 )0.291 )0.290 98.164 101.615 93.328 )1.113 )1.113 )1.113
5 )0.224 )0.223 )0.221 102.662 107.409 93.883 )0.815 )0.815 )0.815
6 )0.188 )0.187 )0.183 103.238 109.426 89.849 )0.632 )0.632 )0.632
7 )0.167 )0.167 )0.160 103.165 110.359 85.807 )0.532 )0.532 )0.532
8 )0.152 )0.152 )0.144 101.433 109.495 80.499 )0.460 )0.460 )0.460
9 )0.141 )0.142 )0.131 98.927 107.551 75.215 )0.404 )0.404 )0.404
10 )0.133 )0.134 )0.121 95.572 104.573 69.746 )0.359 )0.359 )0.359
20 )0.088 )0.090 )0.068 52.968 59.648 30.599 )0.149 )0.149 )0.149
30 )0.056 )0.057 )0.040 25.726 29.255 13.863 )0.086 )0.086 )0.086
40 )0.017 )0.016 )0.014 13.610 15.741 6.894 )0.058 )0.058 )0.058
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the convergence of the interaction energies for the
A2R�;C2R�, and B2P states computed using Bloch, HS,
and Kato localizations. Inspection of Table 2 shows that
at R � 3 bohr convergence is found only for the B2P
state. For the R states we see a slow apparent conver-
gence for low orders, and the onset of rapid divergence
for high orders. The observed convergence properties do
not signi®cantly depend on the localization conditions
employed in the calculations. For R � 7 bohr the itera-
tive procedure appears to converge for all three states,
although for the C state this convergence is pathologi-
cally slow (see Table 3). Again the results are almost
independent of the localization employed, although the
Kato procedure appears to give slightly better results
than other localizations. We also computed the PadeÂ
approximants for the divergent and slowly convergent
series but we found no signi®cant improvement in con-
vergence properties.

Closer inspection of the computed interaction ener-
gies revealed that the divergence seen for R � 3 is only
apparent. Very high order calculations with a smaller
basis set showed that the sequence of energies that
should approximate the energy of the A state actually
converges to the energy of the X2R� ground state, while
the sequence designed to approximate the energy of the
C state converges to the energy of the A state. This
unusual behavior is related to the fact that orthogonality
of the wave functions for the A and C states to the wave
function of the X state was not imposed during the it-
erative procedure. As a result the interaction energies
converge to the ground-state energy despite the fact that
the excited-state eigenfunctions of H0 were used as the
zeroth-order wave functions (this problem does not
occur for the B2P state because this state is orthogonal
by symmetry to the X ground state).

To overcome the problem described above we con-
sidered a larger model space with the 1s hydrogen orbital
included in the active space. Test calculations showed
that also in this case the HS and Kato methods are not
clearly superior to the Bloch method (which is the sim-
plest method based on some kind of minimum-distance

principle) so all results reported were obtained with the
use of Bloch localization. The interaction energies for
the A state obtained when the ground state is included in
the model space (i.e., with the 1s; 2s, and 2pz orbitals in
the active set) are presented in Table 4. From Table 4 it
can be seen that inclusion of the X state in the model
space prevents the high-order ``collapse'' to the X state,
and the iterative procedure is convergent. In the region
of the chemical minimum, R � 3 bohr, the tenth-order
treatment reproduces the FCI energy with an error of
2% . At this distance convergence is not particularly fast,
but this is not surprising, since the wave function for the
A state in this region di�ers substantially from its as-
ymptotic form. At R � 7 bohr convergence is much
faster. The second iteration reproduces 98% of the FCI
result, and the error of the third iteration is only 0.6% .
Afterwards, the convergence slows down, but nonethe-
less the 30th iteration reproduces the interaction energy
with an error of ÿ0:06% . We also found that the fast
convergence of the symmetry-adapted perturbation se-
ries for the X state was not improved by this extension of
the model space.

The situation is very di�erent for the C state.
The inclusion of the X state in the model space does
not improve the convergence for this state, and the
convergence pattern is qualitatively the same as pre-
sented in Tables 2 and 3. This very unsatisfactory
convergence can be due to a strong coupling of the C
state with the higher R states of HeH. Indeed, it has
been reported [36] that the C2R� state can interact
with higher-lying R states, especially with the D2R�
state. In order to check if convergence for the C state
improves by including in the model space the D state
and two other states that are asymptotically degener-
ate with it we performed calculations with the model
space containing the six lowest R states, i.e., with the
3s; 3pz; and 3dzz orbitals added to the active set. The
results, presented in Table 5, show that the use of a
larger model space improves the convergence signi®-
cantly, although the observed convergence rate is still
rather slow, and shows an oscillatory behavior. This

Table 4. Convergence of the interaction energy for the A2S+ state
of HeH. The X, A, and C2S+ states are included in the model
space. Bloch localization is assumed. E(n) denotes the interaction
energy of the nth iteration, e(n) = E(n))E(n)1) (e(1) = E(1), and

d(n) = 100(E(n))Eint)/Eint is the percentage error with respect to
the FCI interaction energy Eint. Energies are in hartree. The symbol
()N) denotes 10)N

n R = 3 bohr R = 7 bohr

e(n) E(n) d(n) e(n) E(n) d(n)

1 )0.71497()3) )0.71497()3) )94.777 )0.49613()5) )0.49613()5) )96.427
2 )0.82032()2) )0.89182()2) )34.851 )0.13097()3) )0.13593()3) )2.099
3 )0.16246()2) )0.10543()1) )22.983 )0.20862()5) )0.13802()3) )0.597
4 )0.11114()2) )0.11654()1) )14.864 )0.42358()6) )0.13844()3) )0.292
5 )0.61204()3) )0.12266()1) )10.393 )0.93847()7) )0.13854()3) )0.224
6 )0.46656()3) )0.12733()1) )6.985 )0.50156()7) )0.13859()3) )0.188
7 )0.24996()3) )0.12983()1) )5.159 )0.29303()7) )0.13862()3) )0.167
8 )0.23881()3) )0.13222()1) )3.414 )0.20434()7) )0.13864()3) )0.152
9 )0.80384()4) )0.13302()1) )2.827 )0.15009()7) )0.13865()3) )0.141
10 )0.15965()3) )0.13462()1) )1.661 )0.11692()7) )0.13867()3) )0.133
20 )0.38621()3) )0.13835()1) 1.069 )0.45797()8) )0.13873()3) )0.089
30 )0.50842()6) )0.13634()1) )0.401 )0.33774()8) )0.13877()3) )0.061

FCI )0.13689()1) )0.13885()3)
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rather disappointing result suggests that despite the
use of an extended model space, the wave function for
the C state is very strongly perturbed by interactions
with higher states.

Since convergence for C2R� is not satisfactory, it is
interesting to check if the relatively poor performance of
the perturbation method is due to coupling with higher
states, or if our method has, in general, convergence
problems for the highest state from the asymptotically
degenerate set. In Table 6 we report the interaction en-
ergies for the 32P state (this is the higher state of the
asymptotically degenerate pair of P states). The active
set employed consists of the 2px; 3px, and 3dxz orbitals,
i.e., the model space includes the B, E, and 32P states.
The convergence pattern observed is very similar to that
found for the A state, cf. Table 4. In particular, the
results for R � 7 bohr are very encouraging: the second
iteration reproduces almost 98% of the interaction en-
ergy. Similarly good convergence was also found for the
two other states included in the model space, i.e. for
the B2P and E2P states. This suggests that the unsatis-
factory convergence for the C state is an exception

due to strong interactions of this state with higher
R states.

In Table 7 we report results for the lowest state of D
symmetry. In this case the active set consists of the 3dxy
orbital. Very good convergence is observed for this state,
especially for the larger distance.

4 Conclusions

In this paper we have developed a new method for the
calculation of the interaction energies for open-shell
complexes, based on symmetry-adapted perturbation
theory. The new formalism can be viewed as an
extension of the theory of model spaces and wave
operators to the case of perturbation theories with
symmetry adaptation. We have tested the proposed
approach on the model system consisting of a ground
state helium atom interacting with an excited hydrogen
atom. Using several excited R;P, and D states of HeH
as examples we have shown that by properly choosing
the zeroth-order model space one can obtain accurate

Table 5. Convergence of the interaction energies for the C2S+ state of HeH. The lowest six states of 2S+ symmetry are included in the
model space. Bloch localization is assumed. Energies are in hartree. See the caption to Table 4 for an explanation of the symbols

n R = 3 bohr R = 7 bohr

e(n) E(n) d(n) e(n) E(n) d(n)

1 0.42908()1) 0.42908()1) 161.670 0.10552()1) 0.10552()1) 54.760
2 )0.12021()1) 0.30886()1) 88.358 )0.98229()3) 0.95700()2) 40.354
3 )0.24428()2) 0.28444()1) 73.461 0.25616()3) 0.98262()2) 44.111
4 )0.18109()2) 0.26633()1) 62.417 )0.30429()3) 0.95219()2) 39.648
5 )0.26086()2) 0.24024()1) 46.509 )0.16914()3) 0.93528()2) 37.168
6 0.54659()3) 0.24571()1) 49.843 )0.26153()3) 0.90912()2) 33.332
7 )0.35029()2) 0.21068()1) 28.480 )0.22624()3) 0.88650()2) 30.014
8 0.31930()2) 0.24261()1) 47.953 )0.24409()3) 0.86209()2) 26.434
9 )0.56021()2) 0.18659()1) 13.789 )0.21884()3) 0.84021()2) 23.225
10 0.97119()2) 0.28371()1) 73.016 )0.21659()3) 0.81855()2) 20.048
20 )0.14375()2) 0.23096()1) 40.851 )0.74746()4) 0.68963()2) 1.141
30 )0.40691()3) 0.19673()1) 19.972 )0.36523()4) 0.65526()2) )3.900
40 )0.10527()3) 0.16986()1) 3.585 )0.44310()3) 0.62927()2) )7.712

FCI 0.16398()1) 0.68185()2)

Table 6. Convergence of the interaction energies for the 32Õ state of HeH. The B, E, and 32Õ states are included in the model space.
Bloch localization is assumed. Energies are in hartree. See the caption to Table 4 for an explanation of the symbols

n R = 3 bohr R = 7 bohr

e(n) E(n) d(n) e(n) E(n) d(n)

1 0.41935()3) 0.41935()3) )102.921 )0.25939()5) )0.25939()5) )98.935
2 )0.94821()2) )0.90628()2) )36.878 )0.23593()3) 0.23853()3) )2.058
3 )0.18600()2) )0.10923()1) )23.924 )0.38395()5) )0.24236()3) )0.481
4 )0.12161()2) )0.12139()1) )15.453 )0.75126()6) )0.24312()3) )0.173
5 )0.73424()3) )0.12873()1) )10.339 )0.14719()6) )0.24326()3) )0.113
6 )0.49279()3) )0.13366()1) )6.907 )0.75150()7) )0.24334()3) )0.082
7 )0.32474()3) )0.13691()1) )4.645 )0.45865()7) )0.24338()3) )0.063
8 )0.21801()3) )0.13909()1) )3.127 )0.31974()7) )0.24342()3) )0.050
9 )0.14521()3) )0.14054()1) )2.115 )0.23124()7) )0.24344()3) )0.040
10 )0.97579()4) )0.14152()1) )1.436 )0.17142()7) )0.24346()3) )0.033
20 )0.20447()5) )0.14348()1) )0.066 )0.17496()8) )0.24351()3) )0.011
30 )0.16430()6) )0.14354()1) )0.028 )0.57363()9) )0.24352()3) )0.007
40 )0.81604()7) )0.14355()1) )0.021 )0.33304()9) )0.24352()3) )0.006

FCI )0.14358()1) )0.24354()3)
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interaction energies near the van der Waals minimum
of the ground state provided that the state under
considerations is not strongly perturbed by higher-
lying excited states.

It is worth noting that the iterative procedure based
on Bloch, HS, and Kato localization conditions is
compatible, in the asymptotic region, with the degen-
erate polarization (Rayleigh-SchroÈ dinger) perturbation
expansion. This means that the computed interaction
energies can be interpreted in terms of the electro-
static, resonance, induction, and dispersion contribu-
tions, and that they have well-de®ned asymptotic
large-R behavior governed by multipole expansion [54].
The multireference structure of our approach also
enables the method to be extended to many-electron
systems using the techniques of multireference cou-
pled-cluster theory [55]. Work in this direction is in
progress in our group.
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Appendix

In this Appendix we shall prove that the HS wave
functions, de®ned recursively as

�/�n�ak � /�0�ak � R̂ak
�ÿVa/

�nÿ1�
ak �

X
b

X
l

Qbl
ak�n�/�nÿ1�bl

�
;

�A1�

ful®ll the localization conditions of Eqs. (17) and (18) if
this condition is ful®lled by the functions of the �nÿ 1�th
iteration.

To prove this we act on both sides of Eq. (A1) with
the operator �Ha ÿ E�0�k �, and project the resulting
equation on /�0�cm . This gives

h/�0�cm j�Ha ÿ E�0�k � �/�n�ak i � h/�0�cm jVa/
�nÿ1�
ak i

ÿ
X

b

X
l

Qbl
ak�n�h/�0�cm j/�nÿ1�bl i

ÿ h/�0�cm jPaVa/
�nÿ1�
ak i

�
X

b

X
l

Qbl
ak�n�h/�0�cm jPa/

�nÿ1�
bl i :

�A2�
When deriving Eq. (A2) we used the identity
�Ha ÿ E�0�k �R̂a � 1ÿ Pa. The sum of the ®rst two terms
on the right-hand side of Eq. (A2) is equal to zero
because in HS theory the coe�cients Qbl

ak�n� ful®ll the
equation

h/�0�cm jVa/
�nÿ1�
ak i �

X
bc

X
l

Qbl
ak�n�h/�0�cm j/�nÿ1�bl i : �A3�

Using the de®nition of Pa, Eq. (5), the sum of the third
and fourth terms can be rewritten asX

p

h/�0�cm j/�0�ap i
h
ÿ h/�0�ap jVa/

�nÿ1�
ak i

� Qap
ak �

X
b6�a

X
l

Qbl
ak�n�h/�0�ap j/�nÿ1�bl i

i
: �A4�

The expression in square brackets vanishes as a conse-
quence of Eq. (A3). This proves that

h/�0�cm j�Ha ÿ E�0�k � �/�n�ak i � 0 : �A5�
The function �/�n�ak ful®lls the intermediate normalization
condition, Eq. (18), since R̂a/

�0�
al � 0 for l � 1; . . . ;D.
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